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ON A METHOD FOR THE UNIFORMIZATION OF SOLUTIONS IN CENTRAL MOTION PROBLEMS* 

I. M. BELBN'KII 

A method is proposed within the framework of linear and regular celestial mechanics 
/l/, which at the expense of introducing regularizing variables permits the removal 
of a pole-type singularity existing in the presence of a central body and which al- 
so reduces the equations of motion to linear form by giving them the form of the 
equations of motion of a harmonic oscillator. This connection with the theory of 
oscillations of a harmonic oscillator permits an analysis from a single viewpoint 
of various types of motions because the energy constant h occurs as a parameter in 
the equation itself. A relation determining the regularizing function under a 
specified field potential is obtained. Using regularization the solutions can be 
represented in a uniformized form, which avoids the necessity of examining the 
branching of the solutions, arising when going around the critical points. Uniform- 
ization in the large /2/ is achieved by using elliptic functions. The perturbed 
Kepler motion is considered as an application of the uniformization method. 

The regularization of equations of motion plays an important role in celestial mechanics, 
especially in the analysis of the collision of bodies. Its seems regularization was first 
suggested by Euler /3/ for a one-dimensional problem of collison of two bodies. In /4/ it 
was shown that Euler's setting of the problem leads to the regularization of the restricted 
three-body problem as well. A regularization allowing the two-body problem to be reduced to 
the harmonic oscillator problem in the complex plane was shown in /5/. Subsequent progress 
in this area occurs in /6,7/ in which spinor regularization is proposed, being a generaliza- 
tion of the Levi-Civita regularization /5/ for the three-dimensional two-body problem. In 
recent years a large number of papers have appeared dealing mainly with various aspects of 
the Kepler problem (see /8/, for instance). In this connection the regularization methods 
proved particularly effective for the analysis of perturbed Kepler motions. Questions on the 
regularization of the equations of motions for conservative systems with 12 degrees of freedom 
were examined, in particular, in /9,10/. 

1. Basic relations. Let the representative point M of a system with a reduced mass 
p move in a central force field with a potential U(r)under an energy constant h. Intro- 

ducing the polar coordinates r and cp in the orbit plane (the origin r = 0 is combined with 
the central body) and using the energy integral '1% pu2 i- u(r) = h and the area integral 

r%cpldt = C (C is the area constant), we obtain, after the elimination of cp 

1 

TP at (L)e=h-UU1(r) (U,(r)=U(r)+$$) (1.1) 

Here U,(r) is the reduced potential energy. A qualitative analysis of Bq.(l.l) for a 

prescribed form of potential energy U(r) can be made by the Weierstrass method /ll/. Below 
we indicate another method, based on the introduction of a regularizing transformation of 
time. The idea for the method goes back to /12/. 

2. Regularization of time. We introduce a new regularizing independent variable T = 
7 @) by setting 

&c = g-' (r) dt (g (r) > 0) (2.1) 

Here g(r) is a function of variable r, belonging to class C' and not vanishing in the phase 
space domain corresponding the original system's motion. In accord with transformation (2.11, 

Eq.(l.l), after differentiation with respect to z and reduction by the nonzero factor dr!& 
takes the form 

n 

p s = & (gz (r) (h - UI (r))) (2.2) 
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TO linearize the equation obtained we must require that the right-hand side of (2.2) be a 
linear function of r. Hence as a result of integration we obtain the fundamental relation 
for determining the regularizing function g(r) for a prescribed form of the total potential 

G (r) 

g* (r) (h - VI (r)) = 1/,c,9 + c,r + cQ (c,, cI, c8 = const) (2.3) 

Expression (2.3) can be looked upon also as a relation for defining the form of the total pot- 
ential U1 (r), admitting of the regularization being examined under a prescribed from of the 

regularizing function g(r). In accordance with (2.2) and (2.3) we obtain a linear equation 
written as an equation of motion of a harmonic oscillator 

dWd9 = qr I p + c, I p (2.4) 

The values r= rl and r=r, for which the radial velocity v, = Wdt vanishes aretheroots 
of the equation h- VI (r) = 0. Consequently, representing the right-hand side of (2.3) as 

B (r - rl) x (r - rJ (B = con&), we obtain the following relations between the parameters: 

CI = ?B, cg = - B (rt + rJ, cl) = Br,r, (2.5) 

Note that in the case of real values rl and r, the discriminant A = cIp - 2c,c, > 0. 

3. Uniformization of solutions. When integrating (2.4) we should distinguish the 
cases: c,tc, > 0, c&t < 0 and c&l = 0. 

a) Let c,/c, > 0. In this case the general integral of (2.4) is 

r=Ach(vT+u)-c&,=a(echs-i), ~=c,/c,,A=~~>O,Y~=C~/~,~=V~+~ (3.1) 

Here A and & are integration constants, a is called the mean distance, and e is the quasi- 
eccentricity. To determine the latter we find the roots of the equation &I&= 0 in the 
form rl = a (e - 1) and r, = - a (e + i), which, according to (2.51, leads to the relation 

ea = 1-2c,-1c,a-a = l-2c,c,cS-' (3.2) 

To determine the true anomaly 'p* = cp + con& we make use of the area integral. Introducing 
the regularizing variable z of (2.1) and directing the abscissa axis z along the apsidalline 
in the direction toward the perigee 'p* = cp), with due regard to (3.1) we obtain 

(r*)+‘g (or*) dr* 

VW((r*-+ l)* -@) 
(r* = 5) (3.3) 

We introduce a new variable y = r* -m, where the parameter m is chosen from the condition, 
the terms quadratic in y in radicand (3.3) vanish. This condition yields m = --J13 and 
equality (3.3) becomes 

dcp=s (u + 4-‘ja g (0 (Y + m))du 

V/4@ --a) (I/ - Q)(U - ea) 
(3.4) 

Here the roots ei(i = 1, 2, 3) satisfy the conditions e, >e%>e$, cl-k e2 + e3 = 0, while their 
values are determined by the expressions 

e > 1; e, = e - Vg, e, = I/s, e, = - (e + Va), e < 1; e, = */a, e, = e - VQ, e, = - (e + V3) (3.5) 

For the integration of (3.4) we introduce the Weierstrass elliptic function, setting 
b (u; & gs)* where according to (3.5) the invariants g, and g, are 

Y= 

6% = -4(e,e, + e,e, f e&) = 4 (1 + se*) / 3, gS = 4e,ep, = 8 (I-9e") I27 (3.6) 

Taking advantage of the relation 

B" (u) = 4 (P (2~) - e,) (a (u) - e2) (P (u) - e,) (' = d / au) 

well known from the theory of elliptic functions /13/, as a result of integrating (3.4) we 
obtain 

‘P = z s (P (4 + mY’z g (a (rP (24 f m.)) du -t const (3.7) 
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We use (2.1) and (3.1) to determine the time t . We have 

t = 2Vlj:(8 (U) + m)"Zg (a (P (u) + m)) du 2. const (3.8) 

Adding on to (3.7) and (3.8) the expression 

r -2 a (St5 g,, g,) + 4 !3.9) 

for r, we obtain the complete solution of the problem in uniformized form, where u. plays 
the role of the uniformized variable. 

b) Let cIIcl < 0. In this case the general integral of (2.4) is 

r == A ch (vt t a) - c,/c, = u(e ch s + 1) 

a= Ic2/clI,A=ae> 0, v2 = c,lp, s = VT + a (3.10) 

Here A and a are integration constants. Analogously 
computations, we obtain the uniformized solution as 

to case a) , omitting the intermediate 

r=a(F(u;g e*, g,*) + m*) 
(0 = 2cv-‘CZ-~J (F (u) + m*)-‘,: g (a (a (u) + m*)) du + const. 

t = ZV-'s (P (u) -I- m*)‘dg(a(P (u) + m*)) du + const 

(3.11) 

Here U is the uniformizing variable, m* _zC -?n = a/& and the roots el*, es*, es*, respectively, 
are 

e > 1; e,* = --es, e,* = -e2, e9* = -e,, e < 1; e,* = -es, e,* = -e,, e,* = -e, 
(3.12) 

The relations gz* = g, and g,* =- g, are valid for the invariants gz* and gs*. 
c) Let c2/c1 = 0. In this case the general integral of (2.4) is 

r = A ch(2rt + a) = a ch s (A = a) (3.13) 

Here A and 
ution as 

a are integration constants. Using the uniformization method, we obtain the sol- 

r = aP (u; g2, gs) 

I# = 2cv-la-a J e-"/z (U) g (UP (u)) du f const 

t = 2~~1 jw (u) g tap (LL)) du -+ C0nSt 

el = 1, e, = 0, es= -4, g, = 4, g, = 0 

(3.14) 

4. Generalized Sundman transformation. The generalized Sundman transformation 

/12/ is of special interest when the regularizing function is a power of r, i.e., g(r) = rfl 

(72 # 0). According to (2.1), we have 

dt = r”dz (4.1) 

When n = 1 we obtain the Sundman transformation dt = rdT. A transformation of form (4.1) was 

examined in /14/. The reduced potential U,(r) admitting of the regularization being examin- 

ed, under a specified magnitude of the energy constant h and a specified form of the regular- 

izing function g(r) =r'", has, by virtue of the fundamental relation (2.31, the form 

U,(r) = h - r -*” (V, cIr2 -i- c,r + ca) (4.2) 

Setting g(r) = r” = u”r*” in the formulas of section 3, we obtain the corresponding uniformiz- 
ed solutions. 

a) c,/c, ). 0. According to (3.7)- (3.9) the solution is 

r = a (f? (4 g,, gJ -! m) (4.3) 

cp = ZCW-~U~-~~(B (u) +- rrk)"-'~Yk -4. const 

t = .ZV-~U~~(~ (u) i- m)n+‘/r du i const 
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Bare m =L -‘Ia = -es when e > I and m = -‘I8 = -el when e< 1. The invarients g, aa ga 

are determined by (3.6). 
b) &<O. Here, according to (3.11) the solution has the ssme form as in the preced- 

ing case of c8/el > 0 if m, g, and g, are replaced by m* = -m, g2* = g, and gr* = - ga , 
respectively. 

c) c& = 0. According to (3.14) the solution is 

r = aP (I(; gr, gr) (4.4) 

cp = 2cv-‘CT J iF+* (u) du + const 

t = 2v-‘a* $ P+‘/r (2~) 1 -t const 

As follows fran the formulas presented, the uniformization of the solutions is achieved 
with the aid of elliptic functions for the values n = VS,VI, 51 2, . . . 

Examples. 1. Let n= 11,. The regularizing transformation is 

dr = r-‘!‘dt (g (r) = ;“) 

The total potential U,(r) admitting of the regularization indicated, to (4.2) and allowingfor 
the equality c,=h , is 

VI (r) = -vr c,r - clllr 

Let us consider the case when cI~cl > 0 ma e> i. Here m = -% = - e, and (c,-c,)(c~ - Q) = 1 - ti. 
Introducing the Weierstrass zeta-function c(s) aa using the relation /13/ 

Ip(u+%+s)-4= (% - 4) (% - %) 
P(u) - G 

where 00, and col are the half-periods of function P(U), the integration of (4.3) yields the 
solution 

r = 8 B (G 4Tar r3 - s3 
p = 2Cv-%ad~*(Z - i)-'(E (u + 01 + *) + a*u) + count 

t = 2VhV'(-r(lb)- *u)+ con& 

The solutions when cJti<O ma eJa=0 are obtained analogously. 

20 . Let n -'I* The regularizing transformation (2.1) becomes 

dr = +dt (g (r) = :I9 (4.5) 

The total potential Cr,(r) admitting of the regularfzation being examined, according to (4.2), 
is found to be 

(4.6) 

The energy constant h equals zero. 
a) Cr/Ci>O* From (4.3), with due regard to the expressions 

sP(.)drr=-C(u). sP(.)du=$ P+,+& 

as a result of integration we obtain the solution 

r = 0 @(u:ga11 r3 + m) (4.7) 
'p= 2cv-%l+zb+coMt 

t = 2v-'*'J9 (~D'(U)-~S(U)+(~gr+~l)u)+ocnst 

Thus, the trajectory equation for the motion of parabolic type @ ==O) being examined has the 
form 

r=ll p (( $p+a+m ) 1 
(a=const) (4.8) 

b) .+I < 0. Here the solution has the same form as in the preceding case with the re- 
placement in formulas (4.7) and (4.8) of parameter m by m*=--nr ana of invariants g, ana 
ga by 8,' -k ana g,* --gI , respectively. 

c) c&~=o. Here the solution has the seme form as in case a) if in formulas (4.7) and 
(4.8) we set nr=O end take the invariants as g,=4 and gS=O. 
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5. Perturbed Kepler motion. We consider a perturbed Kepler motioninacentral fieid 
with potential 

a(r)=_+_-_--_ rV +L LS.lj 

In particular, the first approximation potential of an oblate spheroid for points moving irl 
the equatorial plane (a% = 0) /15,16/, as well as the thirdapproximation potential energy of 
an atomic field /17/, have such a form. The correction to the Newtonian potential (--a,/r) in 
the form of an additive summand (-a$~~) can be analyzed as well in the general theory of rel- 
ativity to explain the perihelion motion of Mercury /18/. 

From (5.1) and (2.3) it follows that the regularizing function must be chosen as 

g (F) = F' z (I + fiF)-'fl (5.2) 

where parameter fi is subject to later determination. For this choice of the regularizing 
function g(r) the following relations between the parameters 

2h = $c,, 2a, = c, +- ~#!Jc,, a, - ‘I2 pc2 = c2 ,- PC,, a, = cQ (5.3) 

are valid. Eliminating $9 CP and cg from these relations, we obtain a cubic equation 

a&S - (l$ - V2 PC%) B" + a$ - h = 0 (5.4) 

for the determination of p. Equation (5.4) always has at least one real root. When all 
three roots pl, & and pa are real, when choosing the value of fi we should allow for the 
condition g(r) > 0 which is fulfilled when fi > 0, while for fi< 0 the domain of the motions 
being examined is bounded by a circle of radius r < 1 p 1-l. In the general case, to determine 
the domain of possible motions we can make use of the Hill curves /lg/. 

Let us now turn the consideration of the different types of motions. 

lo. Case of motion of hyperbolic type (h >o). Without loss of generality we 

set fl>O. Then c,=2/+-'>0 and, consequently, the sign of cc/cl depends on the sign of ca= 

(%S - h)B-2. 
a) Let 0 <h <a$. This yields cc/cl> 0 and, consequently, we can use (3.1). As a result 

we obtain r=a(echs-i), where the mean distance u and the quasi-eccentricity e, according 

to (3.2) and (5.3), are 

a = (alp - h)/(2hB), ea = 1 - flas/(haz) (5.5) 

Hence, in particular, it follows that a3 < 0 necessarily for the fulfillment of e>i (when 

h>O). To determine the true anomaly ‘p we use (3.3) wherein g(r) is determined by (5.2). We 
introduce a new variable y = ilr - m, choosing the parameter m from the condition that the 

terms quadratic in y in radicand (3.3) vanish. This yields 

m = - $3 + al-_(ly) (a, = (0 + 1)-l, U? ;~ (C - 1)-J) (5.6) 

and, finally, we obtain 

@= - c;F 1/4y'_;y- g, 
(5.7) 

g, = 4 (3m2 - afl (a1 -- cLI) + a,%) 

g, = -4 (FL + aB)(m + aJ(m - a,) (5.8) 

Uniformization will be achieved if we set y = k (u; g,, g3). As a result we find 

cp = __c (24+ (aJ”z Y + const, air = P tw b% 673) + m (5.9) 

The trajectory equation is 

a/r = P(kq + a) + m (k = (2a~)-'iZ~-'a~~*, a = const) (5.10) 

b) Let a#<h<=~, which corresponds to the case $/Cl < 0. The solution has the same form 

as in the preceding case if a, and a, are replaced, respectively, by al* = -a, and %*=-a* 

c) Let h = a#, which corresponds to the case c&c, = 0. Making use of (3.13) and noting 

that rlrZ = -9 in the case at hand, in accord with (2.5) and (5.3) we obtain 
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The solution itself will have the same form as in the case of c&,>O if we set a,=%-1 

in the expressions (5.6) and (5.8) for m,g, and gs. 

2’. Case of motion of elliptic type (h co). Here the solution will have tbesame 

formasin the case c,/cI>O if we replace a, and a, by al* - -a, and a,* = -a,, respectively, 

andnotethat e<i and a,>0 for the case being examined. 

3O. Case of motion of parabolic type (h=o). Here the value B =0 is one of the 

solutions of (5.4) and, consequently, the regularizing transformation (5.2) reduces to the 
generalized Sundman transformation (4.5). Thus, the solution will be obtained if in the form- 
ulas corresponding to case n = a/,, according (4.61, (5.1) and (5.3) we set 

c1 = za,, E, = 0, - '/#CL, cg = 08 
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